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Abstract

We discuss the squeezing effects for quadrature observables considering self-
similar potential systems which are described either by a purely squeezed
state or by a superposition of purely coherent states. We also discuss the
statistical properties of these systems via thermal states considering either a
purely coherent state or a purely squeezed state representation. The thermal
expectations for a quantum canonical ideal gas of such potential systems are
also calculated in the two representations and compared.

PACS numbers: 03.65.Ca, 03.65.Fd

1. Introduction

The factorization method [1] is used with success in the study of important eigenvalue problems
in physics. The Darboux transformation technique for linear differential equations of second
order [2] is the simplest differential operator realization of this method. Schrödinger was
responsible for the development of the method in this particular case [3]. Because of its
connection with quantum mechanics and supersymmetry theory, the Schrödinger method
became well known among physicists. The concept of supersymmetry was first introduced in
the early 1970s [4] in the context of a unifying treatment of bosonic and fermionic parts of
the string spectrum and has become today a field in its own right with many applications to
several fields of physics. In supersymmetric quantum mechanics [5] one-dimensional partner
Hamiltonians Ĥ± are written in terms of the operator Â(a1) ≡ W(a1; x) + ip̂x and its adjoint
operator as

Ĥ− = p̂2
x + V (−)(a1; x) = Â†(a1)Â(a1) and Ĥ + = p̂2

x + V (+)(a1; x) = Â(a1)Â
†(a1),

(1)
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where a1 is a set of potential parameters and the superpotential W(a1; x) is a real function
related to the partner potentials via

V (±)(a1; x) = W 2(a1; x) ± W ′(a1; x), (2)

where dash denotes the derivative with respect to x. For simplicity in this paper we use
the system of units where h̄ = 2m = 1. For a large class of potential systems, such
pairs of Hamiltonians Ĥ± have a property of reparametrization invariance manifested by the
integrability condition Â(a1)Â

†(a1) = Â†(a2)Â(a2) + R(a1), called shape invariance [6],
where a2 is a function of a1 (say a2 = f (a1)) and the remainder R(a1) is independent of
the dynamical variables. Although not all exactly solvable problems are shape-invariant [7],
supersymmetric quantum mechanics together with the shape invariance concept is a powerful
and elegant algebraic technique to study exactly solvable systems [8, 9]. Supersymmetric
quantum mechanics also found many applications in physics [10–15]. In the case of
well-known analytically solvable potentials found in quantum mechanics texts, the sets of
parameters a1 and a2 are related by a translation [5, 8, 16]. One new class of shape-
invariant potentials which are reflectionless and have an infinite number of bound states
was introduced by Shabat and Spiridonov [17, 18]. They analyzed an infinite chain of
Hamiltonians Ĥ n = p̂2

x + Vn(x), with n = 0, 1, 2, . . . , the potentials of which are related by
Vn+1(x) = Vn(x) + 2W ′

n(x) with V0(x) = W 2
0 (x)−W ′

0(x) + R0. In this case, the infinite chain
of differential equations relating the various superpotentials Wn(x) and the constants Rn

W 2
n (x) + W ′

n(x) = W 2
n+1(x) − W ′

n+1(x) + Rn+1, n = 0, 1, 2, . . . (3)

also called the dressing chain in the theory of solitons, reduces to only one equation if we
adopt the ansatz

Wn(x) = W(an; x), an ≡ f (f (· · · f︸ ︷︷ ︸
n times

(a0) · · ·)), (4)

where an is a parameter generated from a0 by a function f . In fact, with (4) into (3) it follows
that the relation

W 2(a; x) + W ′(a; x) = W 2(f (a); x) − W ′(f (a); x) + R(f (a)) (5)

is identically satisfied with respect to a, and the set of equations (3) does not depend on n. In
terms of the operators Â(a) and Â(f (a)), the relation (5) can be written as the shape-invariant
condition Â(a)Â†(a) = Â†(f (a))Â(f (a)) + R(f (a)). When it is assumed that f (u) = qu,
then the set of potential parameters is related by a scaling: an = qna0, with the range of
the scaling parameter values given by 0 < q < 1. The shape-invariant self-similar potentials
discovered by Shabat and Spiridonov [17, 18] are obtained if we demand that all superpotentials
Wn(x) satisfy the ansatz: W(an; x) = qnW(qnx). A self-similar potential can be considered
as quantum deformation of the single-soliton solution corresponding to the Rosen–Morse
potential [18]. Indeed, working with this kind of potential it is possible to obtain as limiting
cases some important potentials utilized to model quantum confined systems [9], such as the
Rosen–Morse, harmonic oscillator and Pöschl–Teller potentials. Relevant applications of the
self-similar potential formalism in physics are related to statistical mechanics [19, 20]. As
examples of these applications we can cite the infinite soliton solutions of the Korteweg–
de Vries equation [21], Ising model for a spin lattice gas in an external magnetic field [22],
random matrices [21], lattice gas model on a line for a two-dimensional Coulomb gas [23], etc.
Other applications of the self-similar potential come from its connection with the harmonic
oscillator quantum deformation algebras, which permits us to establish a relation between the
self-similar potential system with the presence of anharmonic contributions in the ordinary
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harmonic oscillator potential [24] or, as a second possibility, to associate the self-similar
potential with the quantum deformed interacting boson models [25]. These models used to be
applied in the study of thermodynamics properties of molecules and solids and, in this case,
the anharmonic contributions in the thermodynamics quantities are described by quantum
deformed bosons.

Although all the applications of the self-similar potentials mentioned above are related
to statistical studies of systems, the second set of applications is the inspiration for the
present study. In this paper, within a self-consistent algebraic framework, we investigate some
thermal and squeezing properties for self-similar potential systems via two different quantum
state representations: one when the quantum state of the system is associated with a purely
coherent state and another when it happens through a purely squeezed state. As basic tools of
this study we use the general algebraic formalism for the shape-invariant systems presented
in [8] and its capacity to build generalized special quantum states for these systems, such as
purely coherent, purely squeezed or intelligent states [26]. In this sense, this paper is organized
as follows. In section 2 we briefly recall the algebraic formulation to shape invariance and the
construction process of purely coherent and purely squeezed states for self-similar potential
systems. In section 3, we study and compare the squeezing when the self-similar potential
system is described by a purely squeezed state and by a superposition of purely coherent
states. In section 4 we carry out a detailed discussion on the statistical properties of a gas of
self-similar potential systems using thermal states constructed via: (i) purely coherent and;
(ii) purely squeezed states. Brief remarks close the paper in section 5.

2. A short review of the algebraic formulation to self-similar potential systems

2.1. Algebraic model

Recently, the use of operator techniques based on algebraic models [8, 9, 27, 28] brought
renewed interest to the study of shape-invariant systems. In [8], one introduces the parameter
translation operator for the self-similar potential systems [29, 30],

T̂ ≡ exp

{
(log q)a1

∂

∂a1

}
, (6)

which acts in the an-potential parameters space Ea ≡ {|an〉; n = 1, 2, 3, . . .} through the
similarity transformation T̂ O(a1)T̂

† = O(a2). Thus, with the definition of the operators
B̂+ = Â†(a1)T̂ and B̂− = B̂

†
+ = T̂ †Â(a1), the partner Hamiltonians of equation (1) can

be written in the forms Ĥ− = Ĥ− and Ĥ + = T̂ Ĥ+T̂
†, where Ĥ± = B̂∓B̂± and the shape

invariance condition can be written as the commutation relation [B̂−, B̂+] = T̂ †R(a1)T̂ ≡
R(a0), suggesting that B̂− and B̂+ are the appropriate creation and annihilation operators for
the spectra of the shape-invariant potential systems provided that their non-commutativity with
R(an) is taken into account. Indeed, using relations B̂±R(an) = R(an±1)B̂± which readily
follow from the definitions of B̂±, one gets the commutation relations

[B̂+, [B̂+, [B̂+, . . . , [B̂+, [B̂+, R(a0)]] . . .]]]︸ ︷︷ ︸
sequence of n commutation operations

=
{

n∑
k=0

(−1)k
(n

k

)
R(an−k)

}
B̂n

+ (7)

where we used the binomial coefficient definition:
(

n

k

) = n!/{k!(n−k)!}. There are an infinite
number of these commutation relations that, with their adjoint commutation relations and the
commutator [B̂−, B̂+] = R(a0) form an infinite-dimensional Lie algebra, realized here in a
unitary representation.

3



J. Phys. A: Math. Theor. 42 (2009) 075306 A N F Aleixo and A B Balantekin

The ground state of the Hamiltonian Ĥ− satisfies the condition Â|0〉 = 0 = B̂−|0〉. Using
this fact and the relations above it is possible to obtain the eigenvalue equations Ĥ−|n〉 = en|n〉
and Ĥ+|n〉 = {en + R(a0)}|n〉 where the normalized nth excited eigenstate |n〉 = K̂n

+ |0〉 can be
obtained from the ground state by the successive action of the raising operator K̂+ ≡ 1√

Ĥ−
B̂+

and the related eigenvalues are given by e0 = 0 and en = ∑n
k=1 R(ak), for n � 1. With the

results above it is possible to show that

B̂+|n〉 = √
en+1|n + 1〉 and B̂−|n〉 =

√
en−1 + R(a0)|n − 1〉, (8)

making clear the ladder nature of the operators B̂± when applied on the eigenstates
{|n〉; n = 0, 1, 2, . . .} of Ĥ−.

Shape invariance of self-similar potentials was studied in detail in [29, 30]. In the simplest
case studied the remainder in the shape invariance condition is given by R(a1) = ca1, where
c is a constant. Using this expression and the scaling relation an = qna0 we can show that the
eigenvalues of the system have the form

en =
n∑

k=1

R(ak) =
(

1 − qn

1 − q

)
R(a1). (9)

2.2. Purely coherent and squeezed states

The purely coherent states are considered to be the quantum states which most closely approach
the classical limit. They can be defined by three different methods that are equivalent only in
the special case of the harmonic oscillator. According to the ladder-operator method, a purely
coherent state |z; aj 〉C for shape-invariant systems can be obtained by the Glauber expansion
[26, 31]

|z; aj 〉C = NC(ρo, aj )

∞∑
n=0

zn

h
(C)
n (aj )

|n〉,

1

NC(ρo, aj )
=
√√√√ ∞∑

n=0

ρn
o

|h(C)
n (aj )|2

, with ρo = |z|2 (10)

and satisfies the eigenvalue equation B̂−|z; aj 〉C = zZj−1{NC(ρo, aj−1)/NC(ρo, aj )}|z; aj 〉C

where NC(ρo, aj−1) = T̂ †NC(ρo, aj )T̂ , with h
(C)
0 (aj ) = 1 and

h(C)
n (aj ) =

n−1∏
k=0

{√en − ek/Zj+k} =
n∏

k=1

⎧⎨
⎩ 1

Zj+k−1

√√√√ n∑
s=k

R(as)

⎫⎬
⎭ , for n � 1.

(11)

In this expression Zj+k = T̂ kZj T̂
†k , where Zj ≡ Z(a1, a2, a3, . . .) is a general complex

functional.
Again in the ladder-operator method, a purely squeezed state |z; aj 〉S for shape-invariant

systems can be obtained, in a generalized way, by the Glauber expansion [26]

|z; aj 〉S = NS(ρo, aj )

∞∑
n=0

zn

h
(S)
n (aj )

|2n〉, 1

NS(ρo, aj )
=
√√√√ ∞∑

n=0

ρn
o

|h(S)
n (aj )|2

(12)
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and satisfies the definition eigenvalue equation B̂−|z; aj 〉S = zZj−1{NS(ρo, aj−1)/

NS(ρo, aj+1)}B̂+|z; aj 〉S where NS(ρo, aj+1) = T̂NS(ρo, aj )T̂
†, with h

(S)
0 (aj ) = 1 and

h(S)
n (aj ) =

n−1∏
k=0

{√
e2n − e2k

e2n − e2k+1

/
Zj+2k

}
=

n∏
k=1

⎧⎨
⎩ 1

Zj+2k−2

√√√√[
2n∑

s=2k−1

R(as)

/ 2n∑
s=2k

R(as)

]⎫⎬
⎭ ,

for n � 1. (13)

3. Investigating squeezing effects

The uncertainty principle limits the precise knowledge of all physical quantities in a quantum
system and one tool often used to overcome such restrictions in practical applications is
the squeezed states. Today, because of their intrinsic properties, the squeezed states have
found potential applications in high-precision optical measurements, optical communications,
detection of weak signals, atomic and molecular physics, and other quantum physics. We
investigate in this section the squeezing effects observed in a self-similar potential system
via two different approaches: one when the quantum state of the system is associated with
a purely squeezed state and another when it happens with a superposition of purely coherent
states.

3.1. Squeezing via purely squeezed states

From the ladder operators B̂± we can introduce two generalized quadrature operators
X̂ = (B̂+ + B̂−)/

√
2 and P̂ = i(B̂+ − B̂−)/

√
2 which satisfy the canonical commutation

relation [X̂, P̂ ] = iR(a0). The squeezing property of the state |z; aj 〉S can be evaluated
by calculating the variances of the quadrature operators σ

(S)
X and σ

(S)
P in this state. We

use σ
(S)
O ≡ (�Ô)2

S ≡ S〈z; aj |(Ô − 〈Ô〉S)
2|z; aj 〉S = 〈Ô2〉S − 〈Ô〉2

S, where the notation
〈Ô〉S = S〈z; aj |Ô|z; aj 〉S stands for the expectation value of a given observable Ô in the
state |z; aj 〉S of the quantum system. Using the relations (8) and definition (12) we find that
〈X̂〉S = S〈z; aj |X̂|z; aj 〉S = 0 = S〈z; aj |P̂ |z; aj 〉S = 〈P̂ 〉S and that

σ
(S)
X (z, aj ) = S〈z; aj |X̂2|z; aj 〉S = {1 + 2ηS(z, aj ) + [1 + ηS(z, aj )]δS(z, aj )}�H (14)

σ
(S)
P (z, aj ) = S〈z; aj |P̂ 2|z; aj 〉S = {1 + 2ηS(z, aj ) − [1 + ηS(z, aj )]δS(z, aj )}�H, (15)

where �H ≡ 1
2 |〈[X̂, P̂ ]〉S| = 1

2R(a0) gives the Heisenberg uncertainty minimum value as a
reference and the other related factors are obtained by

δS(z, aj ) = 2

(
NS(ρo, aj−2)

NS(ρo, aj )

)
Re{zZj−2} and

ηS(z, aj ) = N 2
S (ρo, aj )

∞∑
n=0

e2n

R(a0)

(
ρn

o

|h(S)
n (aj )|2

) (16)

with NS(ρo, aj−2) = T̂ †2NS(ρo, aj )T̂
2. Using expression (9) of en for self-similar potentials,

we find that
n−1∏
s=0

√
e2n − e2s

e2n − e2s+1
=
√

(q2; q2)n

qn(q; q2)n
, (17)

where the q-shifted factorial (q; q)n is defined as (p; q)0 = 1 and (p; q)n = ∏n−1
j=0(1 − pqj )

with n ∈ Z and n � 1. Therefore, if we assume the generalizing functional with the form

5
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Zj = √
R(a2)/(1 − ba3), where b is a real constant, and use this propose and the scaling

relation an = a0q
n we have that Zj+2k−2 ≡ T̂ (2k−2)Zj T̂

†(2k−2) =
√

R(a1)q2k−1/(1 − ba1q2k)

and thus we can prove that

n∏
k=1

Zj+2k−2 =
√

(1 − ba1)[R(a1)]nqn2

(ba1; q2)n+1
. (18)

Assuming that ba1 = 1/q and inserting relations (17) and (18) into equation (13) we get

h(S)
n (aj ) =

√
(q2; q2)n

[R(a1)]nqn(n+1)
(19)

where we used the q-shifted factorial relation (a; q)n+k = (a; q)k(aqk; q)n. Inserting
expression (19) into (12) we find

1

N 2
S (ρo, aj )

=
∞∑

n=0

[ρoR(a1)]nqn(n+1)

(q2; q2)n
= Eq2(q2ρ) = (−q2ρ; q2)∞

where ρ ≡ ρoR(a1)

(20)

and we used the Jackson’s q-exponential definition [32] Eq(z) = ∑∞
n=0 qn(n−1)/2zn/(q; q)n =

(−z; q)∞. Following a similar procedure and using the expression of the generalizing
functional Zj and result (17) it is possible to show after some calculations, that

h(S)
n (aj−2) = T̂ †2h(S)

n (aj )T̂
2 =

√
(q2; q2)n(1 − 1/q)

[R(a1)]nqn(n−1)(1 − q2n−1)
(21)

and thus

1

N 2
S (ρo, aj−2)

= 1

1 − q
[q(−ρ; q2)∞ − (−q2ρ; q2)∞]. (22)

We can then show that the factors in (16) related to with the variances of the quadrature
operators are given by

�H = R(a1)

2q
, δS(ρ, q) = 2

√
R(a1)

1 − q(−ρ; q2)∞/(−q2ρ; q2)∞
Re z,

ηS(ρ, q) = q

1 − q

[
1 − (−q4ρ; q2)∞

(−q2ρ; q2)∞

] (23)

where we used that e2n/R(a0) = q(1 − q2n)/(1 − q).

3.2. Squeezing via the superposition of purely coherent states

The linear superposition principle is one of the most fundamental features of quantum
mechanics. It was realized that the interference between quantum states gives rise to various
non-classical effects [33]. In particular, it was shown that the squeezing phenomenon emerges
from a superposition of coherent states [34]. Following this idea, we investigate squeezing
in self-similar potential systems by the superposition of two purely coherent states along a
straight line on the z-plane [35]. The states constructed in this case, called even coherent
states |z; aj 〉+ and odd coherent states |z; aj 〉−, are given by

|z; aj 〉± = C±(ρo; aj ){|z; aj 〉C ± | − z; aj 〉C} (24)

6
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where, using expression (10), we can prove that the normalization condition
±〈z; aj |z; aj 〉± = 1 is satisfied when

C±(ρo; aj ) =
√

N 2
C(−ρo, aj )

2
{
N 2

C(−ρo, aj ) ± N 2
C(ρo, aj )

} . (25)

We observe that for large values of the amplitudes, |z| 
 1, the components |±z; aj 〉C become
macroscopically distinguishable and we get with such a superposition (24) two examples of
the so-called Schrödinger cat state [36]. One can show that ±〈z; aj |z; aj 〉∓ = 0, and we find
that

B̂−|z; aj 〉± = zZj−1

[
NC(ρo, aj−1)C±(ρo; aj−1)

NC(ρo, aj )C∓(ρo; aj )

]
|z; aj 〉∓ (26)

B̂2
−|z; aj 〉± = ρZj−1Zj−2

[
NC(ρo, aj−2)C±(ρo; aj−2)

NC(ρo, aj )C±(ρo; aj )

]
|z; aj 〉±. (27)

One then gets 〈X̂〉± = ±〈z; aj |X̂|z; aj 〉± = 0 = ±〈z; aj |P̂ |z; aj 〉± = 〈P̂ 〉±. It is possible to
observe squeezing effects in the even coherent state |z; aj 〉+ and we find that

σ
(+)
X (z, aj ) = +〈z; aj |X̂2|z; aj 〉+ = {1 + 2η+(z, aj ) + 2δ+(z, aj )}�H (28)

σ
(+)
P (z, aj ) = +〈z; aj |P̂ 2|z; aj 〉+ = {1 + 2η+(z, aj ) − 2δ+(z, aj )}�H, (29)

where

η+(z, aj ) = ρoZ2
j−1

R(a0)

[N 2
C(ρo, aj−1)C

2
+(ρo; aj−1)

N 2
C(ρo, aj )C

2−(ρo; aj )

]
(30)

δ+(z, aj ) = ρoZj−1Zj−2

R(a0)

[
NC(ρo, aj−2)C+(ρo; aj−2)

NC(ρo, aj )C+(ρo; aj )

]
(31)

when we have a real functional Zj . Using expression (9) for en for the self-similar potentials,
we find that

n−1∏
k=0

√
en − ek =

√
[R(a1)]nqn(n−1)/2(q; q)n

(1 − q)n
(32)

and, if we assume Zj = R(a1) and use the scaling relation an = a0q
n, we get Zj+k−1 ≡

T̂ (k−1)Zj T̂
†(k−1) = R(a1)q

k−1 and thus we can prove that
n∏

k=1

Zj+k−1 = [R(a1)]
nqn(n−1)/2. (33)

Therefore, using relations (32) and (33) into equation (11) we find that

h(C)
n (aj ) =

√
(q; q)n

[R(a1)]n(1 − q)nqn(n−1)/2
(34)

and thus, using (34) and (11), it follows that

1

N 2
C(ρo, aj )

=
∞∑

n=0

qn2/2

(q; q)n
[ρoR(a1)(1 − q)/

√
q]n = E(1/2)

q

(
ξ (0)
q

)
where ξ (0)

q ≡ ρ(1 − q)/
√

q

(35)

7



J. Phys. A: Math. Theor. 42 (2009) 075306 A N F Aleixo and A B Balantekin

and we used the q-exponential definition [37] E
(μ)
q (z) = ∑∞

n=0 qμn2
zn/(q; q)n. Following a

similar procedure and using the expression of the functional Zj and result in (32) it is possible
to show after some calculations that

h(C)
n (aj−k) = T̂ †kh(C)

n (aj )T̂
k =

√
(q; q)n

[R(a1)]n(1 − q)nqn(n−2k−1)/2
, (36)

and thus

1

N 2
C(ρo, aj−k)

= E(1/2)
q

(
ξ (k)
q

)
where ξ (k)

q = ξ (0)
q /qk. (37)

In this case, the factors in equation (16) related to the variances of the quadrature operators
are given by

η+(ρ, q) = ρ

q

(
r(0)
q − 1

r
(1)
q + 1

)
and δ+(ρ, q) = ρ

q2

√√√√E
(1/2)
q

(−ξ
(0)
q

)
E

(1/2)
q

(−ξ
(2)
q

)
(

r
(0)
q + 1

r
(2)
q + 1

)

(38)

where r(k)
q ≡ E

(1/2)
q

(
ξ (k)
q

)/
E

(1/2)
q

(−ξ (k)
q

)
.

In order to compare the squeezing effects in self-similar potential systems obtained with
the purely squeezed state |z; aj 〉S and the purely coherent composite state |z; aj 〉+ constructed
in this section, we display in figure 1 the three-dimensional plots of the surfaces of the
variances σ

(S)
P (ρ, q) and σ

(+)
P (ρ, q), measured in units of �H = 0.5R(a1)/q, as a function

of the quantum state expansion factor ρ and the self-similar scaling parameter q, presented
in a logarithmic scale. In all numerical calculations presented in the figures of this paper we
assumed the remainder value to be R(a1) = 1. It should be noted from the figure that we
obtain squeezing effects in the variance of P̂ , characterized by elevated regions of the σP -
surface with respect to the unphysical bottom plane. However, the behaviour of the variance
of P̂ in terms of ρ and q is different for each case. The variance σ

(S)
P (ρ, q) is restricted

in general to the region with log ρ < −0.5 and shows a weak dependence with q when
log q < −1.0. For the range −0.5 < log q � 1 the squeezing surface of σ

(S)
P (ρ, q) shows

decreasing behaviour restricting the allowed values for ρ further. On the other hand, the
variance σ

(+)
P (ρ, q), besides the common property of being present in a restricted region in

the (qρ)-plane, shows very different behaviour in terms of these variables. The squeezing
surface of σ

(+)
P (ρ, q) has an almost triangular plateau formed around the (log ρ = −4, q = 1)-

corner, with an increasing border with respect to the unphysical bottom plane given by the
approximated expression log ρ = log q2 − 0.2. To conclude, it should be emphasized that
the self-similar potential system shows qualitative deviations from the Heisenberg’s minimal
uncertainty relation, which in this case [26] is given by σXσP � 1

2R(a1). Like some special
states for quantum deformed systems [38–40], we observe that with the purely squeezed state
|z; aj 〉S or the purely coherent composite state |z; aj 〉+, it is possible to have the variance
in a given quadrature observable approaching zero (around the base of the plateau region)
while the variance in the other observable remains finite. Indeed, this is an expected result
taking into account the relationship between the self-similar potential system and q-deformed
models for the harmonic oscillator system [18, 30]. The deviations from the Heisenberg
minimal uncertainty relation are accepted for distances much smaller than the limit of the
quantum electrodynamics theories according to the experimental tests [39]. The q-deformed
quantum mechanics is a possible candidate to explain theoretically this short distance physics
[39, 41].

8
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Figure 1. Three-dimensional graphics of the variances σ
(S)
P (ρ, q) and σ

(+)
P (ρ, q), measured in

units of �H = 0.5R(a1)/q, in terms of the quantum state expansion factor ρ and the self-similar
scaling parameter q, presented in logarithmic scales.

4. Investigating thermal effects

Setting ε = 1 − q � 1 in equation (9) for a given eigenvalue en of the self-similar potential
we can write the expansion

en(ε) =
[

1 − (1 − ε)n

ε

]
R(a1) ≈

{[
1 +

ε

2
+

ε2

3
+

ε3

4
+ · · ·

]
n − ε

2!

[
1 + ε +

11

12
ε2 + · · ·

]
n2

+
ε2

3!

[
1 +

3

2
ε + · · ·

]
n3 + O(n4)

}
R(a1) (39)

showing that the ε → 0 limit describes the harmonic oscillator potential case en = nR(a1)

and, in general, the eigenvalue en for a self-similar potential incorporates terms in powers
of n that can be interpreted as anharmonic contributions in the ordinary harmonic oscillator
potential [24]. Another possible interpretation of the expansion terms of en is associated
with the q-boson interacting models where now the ε → 0 limit describes the non-interacting
particles (corresponding to an undeformed free gas) while the higher order terms in powers

9
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of ε represent interaction contributions (corresponding to a q-deformed free gas) [25]. In
either case it would be interesting to study quantum statistics of an ensemble constituted with
this kind of systems in terms of the scaling parameter q. In order to carry out this study,
we consider a quantum gas of self-similar potential systems in thermodynamic equilibrium
with the reservoir at temperature 
, which obeys the quantum canonical distribution. The
corresponding density operator in this case reads as

�̂β = 1

Zβ

∞∑
n=0

e−βen |n〉〈n|, (40)

where β = 1/
 is the Boltzmann’s temperature coefficient (we assume the Boltzmann’s
constant value kB = 1) and the partition function of the system is obtained by

Zβ ≡ Z(β, q) =
∞∑

n=0

e−βen = e−αq

∞∑
n=0

eαqqn

where αq = βR(a1)

1 − q
. (41)

4.1. Thermal effects via purely coherent states

From both the physical and mathematical points of view, purely coherent and purely squeezed
states of quantum mechanics are fascinating objects having important applications in many
fields. Often one is interested in the evaluation of the moments {〈Ôk〉C,S, k = 1, 2, 3, . . .}
of some observable Ô when the state of the system is represented by these special quantum
states. From a practical point of view, the most important observables are related to the powers
of Ĥ−. In general, overcompleteness of the coherent states makes it possible to obtain useful
information about a given observable from its diagonal expansion in these quantum states. In
this sense, taking into account equation (10) and the relation 〈n|Ĥk

−|n′〉 = ek
nδnn′ we find that

〈Ĥk
−(ρ, q)〉C ≡ C〈z; aj |Ĥk

−|z; aj 〉C = N 2
C(ρo, aj )

∞∑
n=0

ek
nρ

n
o∣∣h(C)

n (aj )
∣∣2

= 1

E
(1/2)
q

(
ξ

(0)
q

) ∞∑
n=0

ek
nq

n2/2
[
ξ (0)
q

]n
(q; q)n

(42)

where we used equations (34) and (35). Considering relation (9) and the definition of the
q-exponential function E

(μ)
q (z), we can prove after some calculations that

∞∑
n=0

ek
nq

n2/2
[
ξ (0)
q

]n
(q; q)n

=
[
R(a1)

1 − q

]k k∑
m=0

(−1)m
(

k

m

)
E(1/2)

q

(
ξ (−m)
q

)
(43)

and with this result in (42) it follows that

〈Ĥk
−(ρ, q)〉C =

[
R(a1)

1 − q

]k k∑
m=0

(−1)m
(

k

m

)
χ(−m)

q where χ(j)
q ≡ E

(1/2)
q

(
ξ

(j)
q

)
E

(1/2)
q

(
ξ

(0)
q

) ,
(44)

showing that the expectation value of Ĥk
− in the purely coherent state |z; aj 〉C can be obtained

through the sum of (k + 1) parcels in the ratio factor χ(−m)
q with binomial coefficients

(
k

m

)
.

These expectation values are useful in order to calculate the correlation functions that provide
information about the inherent statistical properties of the state |z; aj 〉C. One of these quantities
is the Mandel parameter [42], defined as Q(M) ≡ (�Ĥ−)2/〈Ĥ−〉 − 1 for a shape-invariant
potential system in general. In the case of a self-similar potential system in a purely coherent

10
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state, using the equivalent expression Q
(M)
C ≡ 〈ĥ−〉C

{[〈
ĥ2

−
〉
C − 〈ĥ−〉C

]/〈ĥ−〉2
C − 1

}
, with

ĥ− ≡ Ĥ−/R(a1), we find that

Q
(M)
C (ρ, q) = 1

1 − q

{
q

(
1 − χ(−2)

q

1 − χ
(−1)
q

)
+ χ(−1)

q − 1

}
. (45)

The Mandel parameter Q
(M)
C (ρ, q) offers the information on the character of the purely

coherent state |z; aj 〉C versus the Poisson distribution function, characteristic of the ordinary
harmonic oscillator system. Since the self-similar potential can be assumed with the addition of
anharmonic contribution in the ordinary harmonic oscillator potential system, it is interesting
to recall that for the harmonic oscillator system, the purely coherent state exhibits a Poissonian
distribution and we have Q(M) = 0. In our case, if we find Q

(M)
C < 0 (> 0) we can say that

the state |z; aj 〉C exhibits a sub-Poissonian (super-Poissonian) statistic.
In order to examine other interesting properties of the purely coherent state |z; aj 〉C

for the self-similar potential associated with mixed quantum states, i.e. the thermal states,
we consider the diagonal matrix elements of the density operator �̂β in the purely coherent
state, Q

(H)
C (β; z, aj ) ≡ C〈z; aj |�̂β |z; aj 〉C, which defines the Husimi’s Q-function in this

representation. Phase-space techniques are very useful in studying quantum mechanics and
quantum statistics [43, 44]. Among the various phase distributions the Husimi function is the
most popular and is used in the study of quantum fluctuation [45], quantum entanglement and
quantum information [46], and as a measure of the complexity of quantum states [47]. In our
case, when we use results (34) and (35) we find that

Q
(H)
C (β; ρo, q) = N 2

C(ρo, aj )

Zβ

∞∑
n=0

e−βenρn
o∣∣h(C)

n (aj )
∣∣2 = 1

ZβE
(1/2)
q

(
ξ

(0)
q

) ∞∑
n=0

e−βenqn2/2
[
ξ (0)
q

]n
(q; q)n

. (46)

Figure 2 displays, in a set of six stages, the thermal evolution of the Husimi Q
(H)
C -surface

as a function of the quantum state expansion factor ρ and the temperature coefficient β. To help
the visualization of the Q

(H)
C -surface behaviour, we show in each small figure constant level

curves. Following the sequence of small figures with the increasing temperature coefficient β,
we observe that: (i) Q

(H)
C (β; ρ, q) starts from ρ-low sensitivity behaviour for very low values

of β and changes for q-low sensitivity behaviour for very high values of β; (ii) for intermediate
values of β and ρ > 1 the Q

(H)
C -surface folds in a maximum-value line that moves closer to the

ρ-axis when β increases; (iii) as expected, for any value of β the positive bounded condition
0 � Q

(H)
C < 1 is always satisfied .

It is not difficult to verify that the normalization condition of the density operator

Tr �̂β =
∫

d2z wC(ρo, q)Q
(H)
C (β; ρo, q) = 1 (47)

is satisfied if we assume the existence of the positive-definite weight function

wC(ρo, q) = R(a1)(1 − q)

πq log (1/q)

(−q
1
2 ξ (0)

q ; q
)
∞(−q

1
2 ξ

(1)
q ; q

)
∞

(48)

and use the relation E
(1/2)
q

(
ξ (0)
q

) = (−q
1
2 ξ (0)

q ; q)∞ together with the Ramanujan’s integral [48]∫ ∞

0
dt tn

(−at; q)∞
(−t; q)∞

= log (1/q)(q; q)n

qn(n+1)/2(a; q−1)n+1
. (49)

(An elementary proof of the Ramanujan’s integral is given by Askey [49].)
Since the purely coherent states |z; aj 〉C for a self-similar potential system form an

overcomplete set of states, they can be used as a basis set despite the fact that they are

11
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β = 0.1 β = 0.5

β = 1.0 β = 2.0

β = 4.0 β = 10.0

(H)
C ( ; , )Q qβ ρ (H)

C ( ; , )Q qβ ρ

(H)
C ( ; , )Q qβ ρ(H)

C ( ; , )Q qβ ρ

(H)
C ( ; , )Q qβ ρ(H)

C ( ; , )Q qβ ρ

Figure 2. The set of six stages showing the thermal evolution of the Husimi function Q
(H)
C in

terms of the quantum state expansion factor ρ and the temperature coefficient β, evaluated for a
purely coherent state |z; aj 〉C. To help the visualization of the Q

(H)
C -surface behaviour, we set in

each small figure some level curves.

non-orthogonal. In addition, we observe that the diagonal representation of the density
operator in purely coherent states (the Husimi’s Q-function), obtained in equation (46), is
convenient for evaluating expectations of the different operators concerning the self-similar

12
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potential system. In this sense we perform the diagonal expansion of the density operator in
the purely coherent states basis:

�̂
(C)
β = 1

Zβ

∫
d2z wC(ρo, q)|z; aj 〉CPC(β; ρo, q)C〈z; aj | (50)

where the conditions about the distribution function PC(β; ρo, q) can be obtained from the
diagonal expansion �̂

(C)
β of the density operator and the relation 〈�|�̂β |�〉 = 〈�|�̂(C)

β |�〉
which must be fulfilled for any arbitrary states 〈�| and |�〉 from the Hilbert space (or for any
states from the basis |z; aj 〉C or |n〉). Using equations (40) and (50) in this relation we can
prove that the following condition must be satisfied,∫ ∞

0
dρo ρn

oN 2
C(ρo, aj )wC(ρo, q)PC(β; ρo, q) = e−βen

∣∣h(C)
n (aj )

∣∣2, (51)

where the normalization functionNC(ρo, aj ), the weight function wC(ρo, q) and the expansion
coefficient h(C)

n (aj ) are given by equations (35), (48) and (34), respectively. Since we
are interested in obtaining the thermal expectation value of the observables related to the
correlation functions for the self-similar potential system, we observe that it is sufficient to
use relation (51) obtained above. Indeed, we can evaluate the thermal expectation value of
Hk

− through of the expression

〈Ĥk
−(β, q)〉C = Tr

{
�̂

(C)
β Ĥk

−
} = 1

Zβ

∫
d2z wC(ρo, q)PC(β; ρo, q)C〈z; aj |Ĥk

−|z; aj 〉C (52)

and, when we consider the expectation value (42) in this expression, we find that

〈Ĥk
−(β, q)〉C = 1

Zβ

∞∑
n=0

ek
n∣∣h(C)

n (aj )
∣∣2
∫ ∞

0
dρo ρn

oN 2
C(ρo, aj )wC(ρo, q)PC(β; ρo, q). (53)

Therefore, with (51) into (53) it is possible to express the thermal expectation value of Hk
−

through the β-derivatives of the Zβ :

〈Ĥk
−(β, q)〉C = 1

Zβ

∞∑
n=0

ek
n e−βen = (−1)k

Zβ

∂kZβ

∂βk
. (54)

In this manner the thermal expectations for the first two powers are

〈Ĥ−(β, q)〉C = −∂ ln Zβ

∂β
and 〈Ĥ2

−(β)〉C = ∂2 ln Zβ

∂β2
+

(
∂ ln Zβ

∂β

)2

. (55)

In a similar way, it is possible to express all thermodynamical and statistical quantities
characteristics of the canonical self-similar potential ensemble as functions of the ln Zβ .
For example, the internal energy UC(β, q) and the heat capacity CC(β, q) of the system may
be obtained through

UC(β, q) = 〈Ĥ−(β, q)〉C and CC(β, q) = ∂UC(β, q)

∂T
= β2 ∂2 ln Zβ

∂β2
. (56)

On the other hand, taking into account the results of equations (55), we can show that the
thermal analogue for the Mandel parameter Q

(M)
C (β, q) is obtained by

Q
(M)
C (β, q) = 1 − ∂2 ln Zβ

∂α2
o

/(
∂ ln Zβ

∂αo

)
where αo = βR(a1). (57)

Before we conclude this section, we note that in the harmonic oscillator limit q → 1
we have en → nR(a1) and the partition function goes to Zβ → 1/{1 − e−αo} while the first
expectation values of Ĥk

− go to the limit expressions given by 〈Ĥ−(β, q)〉C = UC(β, q) →
13
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R(a1)/{eαo − 1} and 〈Ĥ2
−(β, q)〉C → R2(a1){eαo + 1}/{eαo − 1}2. In this case we find the heat

capacity for the harmonic oscillator model of a perfect gas CC(β, q) → R2(a1) eαo/(eαo − 1)2

and the thermal evaluation of the Mandel parameter giving the characteristic result for the
harmonic oscillator potential system Q

(M)
C (β, q) → 1/(eαo − 1).

4.2. Thermal effects via purely squeezed states

In the same way, since 〈n|Ĥk
−|n′〉 = ek

nδnn′ , we find for the expectation value of Ĥk
− in the

purely squeezed state |z; aj 〉S for the self-similar potential system

〈Ĥk
−(ρ, q)〉S ≡ S〈z; aj |Ĥk

−|z; aj 〉S = 1

(−q2ρ; q2)∞

∞∑
n=0

ek
2nq

n(n+1)ρn

(q2; q2)n
(58)

where we used relations (19) and (20). Taking into account relation (9) and the definition of
the q-shifted factorial (q; q)n, after some calculations we can prove that

∞∑
n=0

ek
2nq

n(n+1)ρn

(q2; q2)n
=
[
R(a1)

1 − q

]k k∑
m=0

(−1)m
(

k

m

)
(−ρq2m+2; q2)∞ (59)

and using this result in (58) we find an expression for 〈Ĥk
−(ρ, q)〉S in the same form obtained

in (44) for the purely coherent case of the previous section with the ratio parcel factor χ(−m)
q

replaced by

ζ (m)
q ≡ (−ρq2m+2; q2)∞

(−ρq2; q2)∞
. (60)

Using this general result we can show that the Mandel parameter for the self-similar
potential system in a purely squeezed state, defined by the equivalent expression Q

(M)
S ≡

〈ĥ−〉S
{[〈ĥ2

−〉S − 〈ĥ−〉S
]/〈ĥ−〉2

S − 1
}
, is obtained by using an expression with the same form

presented by equation (45), with the m-order correspondent ratio factor χ(−m)
q replaced by the

ζ (m)
q .

We show in figure 3 the contour plots of the Mandel parameter surface on the (qρ)-plane
for the purely coherent state case (top part of the figure) and the purely squeezed state case
(bottom part of the figure). To help the visualization, we present each level in the figure with
a different shading (darker regions are related to lower observable values). Comparing the
results shown in both cases we observe the resemblance of behaviour between the Mandel
parameters Q

(M)
C (ρ, q) and Q

(M)
S (ρ, q). From the figure we observe: (i) the super-Poissonian

statistic nature of the purely coherent state |z; aj 〉C and of the purely squeezed state |z; aj 〉S for
the self-similar potential system; (ii) the low sensitivity of the Mandel parameters Q

(M)
C (ρ, q)

and Q
(M)
S (ρ, q) in relation to the squeezing parameter q; (iii) the higher values assumed by

Q
(M)
C (ρ, q) in relation to Q

(M)
S (ρ, q) inside the (qρ)-plane limits presented in the figure.

On the other hand, using relations (19) and (20) we can evaluate the Husimi’s Q-
function in a purely squeezed state representation, in this case defined as Q

(H)
S (β; ρo, q) ≡

S〈z; aj |�̂β |z; aj 〉S, and obtain the result

Q
(H)
S (β; ρo, q) = N 2

S (ρo, aj )

Zβ

∞∑
n=0

e−βe2nρn
o∣∣h(S)

n (aj )
∣∣2 = 1

Zβ(−q2ρ; q2)∞

∞∑
n=0

e−βe2nqn(n+1)ρn

(q2; q2)n
.

(61)

Figure 4 is the purely squeezed state version of figure 2, showing, in a set of six stages,
the thermal evolution of the Husimi Q

(H)
S -surface as a function of the quantum state expansion
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Figure 3. Contour plots of the Mandel parameters Q
(M)
C (ρ, q) and Q

(M)
S (ρ, q) on the (qρ)-plane,

evaluated for a purely coherent state |z; aj 〉C and for a purely squeezed state |z; aj 〉S, respectively.

factor ρ and the temperature coefficient β. As in the purely coherent state case, to help the
visualization of the Q

(H)
S -surface behaviour, we set in each small figure some of its constant

level curves. Following the sequence of small figures with the increase in the temperature
coefficient β, we observe: (i) the increase of the Q

(H)
S (β; ρ, q) values according to the increase

in the β values; (ii) the appearance of a maximum folding in the Q
(H)
S -surface, the height and

width of which increase with β while its position moves to lower values of q. This maximum
folding vanishes for higher values of β; (iii) that there is some resemblance between the
behaviour of Q

(H)
C (β; ρ, q) shown in figure 3 and the behaviour of Q

(H)
S (β; ρ, q) shown in

this figure for intermediate values of β, but not for the lowest and the highest values of β used
in the calculation for these figures.
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Figure 4. Same as figure 2 calculated for a purely squeezed state |z; aj 〉S.

Looking at the purely squeezed state Glauber expansion (20) we observe that the
representation of any observable in such kind of states must be restricted to the subspace
E+ of the states with even quantum numbers 2n of the Hilbert space E = E+ + E−. Under these
conditions the following partial normalization relation must be satisfied:

TrS �̂β =
∫

d2z wS(ρo, q)Q
(H)
S (β; ρo, q) = Z

(+)
β

Zβ

(62)
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with the partition function decomposed in the even and odd parts Zβ = Z
(+)
β + Z

(−)
β , where

Z
(+)
β = ∑∞

n=0 e−βe2n and Z
(−)
β = ∑∞

n=0 e−βe2n+1 . It is straightforward to verify that condition
(62) is satisfied when we assume the existence of the positive-definite weight function

wS(ρo, q) = (−q2ρ; q2)∞
π log (1/q2)(−ρ; q2)∞

(63)

and we use the Ramanujan’s integral (49) with the scaling parameter q replaced by q2.
Since the purely squeezed states |z; ak〉S for a self-similar potential system form an

overcomplete set of states in the Hilbert subspace E+, they can be used as a basis set in this
subspace despite the fact that they are non-orthogonal. Under these conditions, we perform
the diagonal expansion of the density operator in the purely squeezed states basis:

�̂
(S)
β =

{
1

Zβ

∫
d2z wS(ρo, q)|z; aj 〉SPS(β; ρo, q)S〈z; aj |

}/(
Z

(+)
β

Zβ

)
(64)

where the conditions about the distribution function PS(β; ρo, q) can be obtained from the
diagonal expansion of the density operator �̂

(S)
β , observing that the relation 〈�|�̂β |�〉 =

〈�|�̂(S)
β |�〉 must be fulfilled for any arbitrary states 〈�| and |�〉 from the Hilbert subspace E+

(or for any states from the basis |z; aj 〉S or |2n〉). Taking into account equations (40) and (64),
we can prove that the following condition must be satisfied:∫ ∞

0
dρo ρn

oN 2
S (ρo, aj )wS(ρo, q)PS(β; ρo, q) = e−βe2n

∣∣h(S)
n (aj )

∣∣2, (65)

where the normalization function NS(ρo, aj ), the weight function wS(ρo, q) and the expansion
coefficient h(S)

n (aj ) are given by equations (20), (63) and (19), respectively.
Since we are interested in obtaining the thermal expectation value of the observables

related to the correlation functions for the self-similar potential system, we observe that it is
enough for us to use relation (65) obtained above. Indeed, we can evaluate the expectation
value

〈Ĥk
−(β, q)〉S = Tr

{
�̂

(S)
β Ĥk

−
} = 1

Z
(+)
β

∫
d2z wS(ρo, q)PS(β; ρo, q)S〈z; aj |Ĥk

−|z; aj 〉S (66)

and, when we use that S〈z; aj |Ĥk
−|z; aj 〉S = N 2

S (ρo, aj )
∑∞

n=0 ek
2nρ

n
o

/∣∣h(S)
n (aj )

∣∣2 we find that

〈Ĥk
−(β, q)〉S = 1

Z
(+)
β

∞∑
n=0

ek
2n∣∣h(S)

n (aj )
∣∣2
∫ ∞

0
dρo ρn

oN 2
S (ρo, aj )wS(ρo, q)PS(β; ρo, q). (67)

Therefore, with (65) into (67) we can prove that

〈Ĥk
−(β, q)〉S = 1

Z
(+)
β

∞∑
n=0

ek
2n e−βe2n = (−1)k

Z
(+)
β

∂kZ
(+)
β

∂βk
. (68)

Taking into account this general result, we find that the internal energy US(β, q), the heat
capacity CS(β, q) and the thermal Mandel parameter Q

(M)
S (β, q) in the purely squeezed states

representation are obtained by expressions with the same form presented, respectively, in
equations (56) and (57) of the previous section with the partition function Zβ replaced by its
even part Z

(+)
β . The following three figures show the behaviour of these thermal quantities in

terms of the temperature coefficient β and the scaling parameter q and compare the results
obtained for the purely coherent state case with the purely squeezed state case.
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Figure 5. In the top part we have the three-dimensional plot of the surface of log {UC(β, q)} as
a function of β and q for the purely coherent state case. Bottom part shows the contour plots of
log {UC(β, q)} and log {US(β, q)} as a function of β and q for the purely coherent state and for the
purely squeezed states cases, respectively.

Figure 5 displays in its top part the three-dimensional plot of the surface of the logarithm
of the internal energy UC(β, q) as a function of β and q for the purely coherent state case. To
make the observation of the differences between the behaviour of UC(β, q) and the behaviour
of the internal energy US(β, q), obtained in the purely squeezed state case, easier we show in
the bottom part of the figure the contour plots of the logarithm of the internal energy surface
on the (β, q)-plane for both the cases. To help the visualization, we present each level in
the figure with a different shading (darker regions are related to lower observable values).
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Figure 6. In the top part we have the three-dimensional plot of the surface of CC(β, q) as a function
of β and q for the purely coherent state case. Bottom part shows the contour plots of CC(β, q) and
CS(β, q) as a function of β and q for the purely coherent state and for the purely squeezed states
cases, respectively.

From the figure we observe: (i) the almost linear increasing of UC(β, q) with β and the low
sensibility with q in the region of the plane (β, q) below the straight line β(q) = 16(1 − q);
(ii) in this region US(β, q) shows lower values than UC(β, q) and some sensibility with q; (iii)
beyond the diagonal linking the corners (0, 1) and (8, 0.1) both of internal energies UC(β, q)

and US(β, q) show increasing behaviour with the greatest values concentrated around the
corner (0, 1); (iv) the behaviour of the two internal energies is very similar in this region,
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β

Figure 7. The three-dimensional plots, in terms of β and q, of the thermal Mandel parameters
Q

(M)
C (β, q) and Q

(M)
S (β, q) evaluated for a purely coherent state |z; aj 〉C and for a purely squeezed

state |z; aj 〉S, respectively.

however we observe that US(β, q) shows a more abrupt transition and a bigger concentration
next to the β = 0.1 side of the figure.

Figure 6 is the version of figure 5 for the heat capacity case, showing in its top part the
three-dimensional plot of the CC(β, q)-surface as a function of β and q. From the figure we
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observe: (i) the appearing of a folding in the heat capacity surface localized along the straight
line β(q) = 5(1 − q) where CC(β, q) shows great values; (ii) this folding increases its height
and width from the corner (0.1, 1) to the side q = 0.1 of the figure; (iii) the behaviour of
CS(β, q) is very similar to CC(β, q), however, like the internal energy case, shows a more
abrupt transition in the folding borders.

In figure 7 we show three-dimensional plots of the surfaces of the thermal Mandel
parameter as a function of the self-similar scaling parameter q and the temperature coefficient
β for the purely coherent state case (top part of the figure) and the purely squeezed state case
(bottom part of the figure). To help the visualization, we set in this figure some level curves
of constant Q

(M)
C (β, q) and Q

(M)
S (β, q) values. We observe from the figure the resemblance

between the behaviour of the thermal Mandel parameter in the two cases. In both of them
we observe the appearing of a very accentuated folding in the surface (such as a jaws hull)
situated around the diagonal of the (qβ)-plane, the height of which increases when β → 0 and
q → 1. Note from the Q

(M)
C (β, q) and Q

(M)
S (β, q) behaviour that the purely coherent state

|z; aj 〉C and the purely squeezed state |z; aj 〉S change from a sub-Poissonian statistic (in the
bottom plane of the thermal Mandel parameter) to a super-Poissonian statistic (in the surface
folding extension of the thermal Mandel parameter).

5. Final remarks

In this paper, using an algebraic approach, we studied squeezing and thermal effects for
self-similar potential systems. We introduced quadrature operators (X̂, P̂ ) and evaluated the
behaviour, in terms of the scaling parameter q and of the quantum state expansion factor ρ, of
the squeezing resulting from two possible quantum states of the systems: a purely squeezed
state and a composite squeezed state resulting from the superposition of two purely coherent
states.

Taking into account that the self-similar potential system can be associated with an
anharmonic potential system, where the anharmonic deviations are related to the scaling
parameter q, we studied the statistical properties, in terms of q and of the Boltzmann’s
temperature coefficient β, of a canonical ensemble constituted by self-similar potential
systems. We evaluated the Husimi’s function Q(H)(β; ρ, q), the internal energy U(β, q),
the heat capacity C(β, q) and the thermal Mandel parameter Q(M)(β, q) when the density
operator �β is expanded in purely coherent states |z; aj 〉C as well as in purely squeezed states
|z; aj 〉S and compared the results obtained in the two representations.
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